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Prediction Equations (GMPEs): The Euclidean
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by Özkan Kale and Sinan Akkar

Abstract We introduce a procedure for selecting and ranking of ground-motion
prediction equations (GMPEs) that can be useful for regional or site-specific probabi-
listic seismic hazard assessment (PSHA). The methodology is called Euclidean dis-
tance-based ranking (EDR) as it modifies the Euclidean distance (DE) concept for
ranking of GMPEs under a given set of observed data. DE is similar to the residual
analysis concept; its modified form, as discussed in this paper, can efficiently serve for
ranking the candidate GMPEs. The proposed procedure separately considers ground-
motion uncertainty (i.e., aleatory variability addressed by the standard deviation) and
the bias between the observed data and median estimations of candidate GMPEs (i.e.,
model bias). Indices computed from the consideration of aleatory variability and
model bias or their combination can rank GMPEs to design GMPE logic trees that
can serve for site-specific or regional PSHA studies. We discussed these features
through a case study and ranked a suite of GMPEs under a specific ground-motion
database. The case study indicated that separate consideration of ground-motion un-
certainty (aleatory variability) and model bias or their combination can change the
ranking of GMPEs, which also showed that the ground-motion models having simpler
functional forms generally rank at the top of the list. We believe that the proposed
method can be a useful tool to improve the decision-making process while identifying
the most proper GMPEs according to the specific objectives of PSHA.

Online Material: MATLAB script and sample input file for EDR index calculation.

Introduction

Ground-motion prediction equations (GMPEs) are the
main tools used in estimating ground-motion intensities for
the purpose of assessing seismic hazard in a seismic-prone
region. Recently, the increasing size and quality of the
ground-motion databases have resulted in a significant num-
ber of new local and global predictive models. Consequently,
engineering seismologists have begun to propose a number
of statistical and probabilistic procedures to rank and select
GMPEs to properly address the seismotectonic features of
the region considered for hazard assessment. One of the ma-
jor objectives of these efforts is to reduce the uncertainty in
ground-motion variability that, essentially, affects the com-
puted hazard at long return periods.

There are numerous methods in the statistical literature
to test the agreement between observed and predicted data
(e.g., chi-square test, Kolmogorov–Smirnov test, variance
reduction, Pearson’s correlation coefficient, and Nash–
Sutcliffe efficiency coefficient). Recently, these methods
have been evaluated by various studies to understand the

suitability of a given predictive model under a set of collected
ground motions (e.g., Scherbaum et al., 2004; Kaklamanos
and Baise, 2011). That said, the most common methodology
for assessing predictive model performance remains as
classical residual analysis. This statistical method determines
the existence of bias through the application of mean resid-
uals, as well as the slopes of the straight lines fitted to the
various residual components (i.e., between-event, within-
event, or total residuals) as functions of estimator parameters
such as magnitude and source-to-site distance. Studies like
Bindi et al. (2006), Scassera et al. (2009), and Shoja-Taheri
et al. (2010) used residual analysis to evaluate GMPEs under
different ground-motion databases. The recent likelihood-
based testing and ranking techniques proposed in Scherbaum
et al. (2004, 2009) as likelihood (LH) and log-likelihood
(LLH) methods, respectively, have also appealed to the
seismological and engineering communities as they are easy
to implement with well-tailored outcomes to define the best
performing GMPEs for a given ground-motion dataset. The
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LH method calculates the normalized residuals for a set
of observed and estimated ground-motion data. It assumes
that predictive model residuals are log-normally distributed,
and it calculates the exceedance probabilities of residuals
as LH values. The suitability of candidate GMPEs is identified
through the median LH value that is described as the LH
index, which takes values between 0 and 1. For an optimum
case, LH values are evenly distributed between 0 and 1, and
the median of LH is ∼0:5. The LLH method is an informa-
tion-theoretic model selection procedure, and it is based on
the log-likelihood approach to measure the distance between
two continuous probability density functions, f�x� and g�x�.
The distribution of f�x� that is supposed to exist for each
individual data point in the observed ground-motion dataset
is not known a priori. This method calculates the average
log-likelihood of a predictive model whose distribution,
g�x�, is known through its median and standard deviation
sigma. The method computes the occurrence probability
of the observed data point by using the probability distribu-
tion of the candidate GMPE. In this way, it computes the LLH
value as the model selection index.

The LH method was initially applied to the broader re-
gion of France, Germany, and Switzerland for a small set of
observed data (Scherbaum et al., 2004). Later, Hintersberger
et al. (2007) extended the dataset for the same region and
implemented the same method using the same candidate
GMPEs as that of the former study. These two studies ob-
tained similar ranking results for the same set of candidate
GMPEs, advocating the robustness of LH indices for selecting
the proper GMPEs in hazard analysis. Stafford et al. (2008)
evaluated the applicability of next generation attenuation
(NGA; Power et al., 2008) GMPEs to Euro-Mediterranean re-
gion by using LH, as well. This method was also considered
in Kaklamanos and Baise (2011) as supplementary to the re-
sults of Nash–Sutcliffe model efficiency coefficient (Nash
and Sutcliffe, 1970) to validate the NGA GMPEs by making
use of a ground-motion dataset assembled from the
recent earthquakes recorded in California. The information-
theoretic LLH approach that supersedes the LH technique
was used for the selection and ranking of GMPEs in various
studies, as well (e.g., Delavaud et al., 2009; Beauval et al.,
2012a,b; Delavaud, Cotton, et al., 2012; Delavaud, Scher-
baum, et al., 2012; Mousavi et al., 2012). Of these studies,
the Delavaud, Cotton, et al. (2012) paper uses LLH as an ad-
junct tool to determine the logic-tree weights of the GMPEs
that are used in assessing the hazard in Europe and south
Mediterranean region under the framework of the Seismic
Hazard HARmonization in Europe (SHARE) project.

This study presents an alternative testing and ranking
approach for a preselected set of GMPEs. Although the LH
and LLH methods inspired us while working on our method-
ology, we used an approach different than those of the LH
and LLH methods while considering the model bias and
aleatory variability in the estimated ground motions. Our
method uses the Euclidean distance: the absolute difference
between the observed and estimated data (analogous to the

residual analysis concept) to account for the trend (model
bias) between the observed and estimated ground-motion
data. The method also employs Euclidean distance to ac-
count for aleatory variability in ground motions (addressed
by the standard deviation of GMPE) through an approach
similar to that of probabilistic seismic hazard assessment
(PSHA). These two features, consideration of model bias and
aleatory variability, make the method appealing for PSHA
projects that carry different types of objectives (e.g., regional
versus site-specific PSHA studies). The method presents
ranking results that are normalized by the total number of
data, which can be considered as an additional strength while
selecting and ranking of GMPEs for regions of sparse data.
The following sections first summarize a number of impor-
tant observations on the most frequently used testing and
ranking methodologies and then describe the fundamental
concepts of our proposed method. The paper ends with a case
study to show the practical implementation, as well as the
specific features, of the proposed methodology. We believe
that the proposed procedure can be used efficiently while
identifying the proper suites of GMPEs for hazard studies
of different objectives. However, we also believe that the sole
use of our procedure for testing and ranking of GMPEs would
be insufficient as a rigorous selection methodology should
be an integral process that considers multiple statistical
measures. The decision-making process could be improved
significantly with the consideration of additional testing
methods, as well as the conventional residual analysis that
is especially helpful as a visual tool.

Summary of Some Observations on the Current
Testing and Ranking Methods

Scherbaum et al. (2004) studied simple statistical mea-
sures such as significance tests, variance reduction, and Pear-
son’s correlation coefficient while proposing the LH method.
In their paper, the authors indicated that these methods do not
produce consistent outcomes to properly rank the perfor-
mance of candidate GMPEs for a given ground-motion data-
set. The direct implementation of conventional residual
analysis, despite its visual efficiency in explaining the level
of agreement between the median predictions and observed
data (model bias), also will not provide flexible options for
ranking candidate GMPEs. The model efficiency coefficient
(Nash and Sutcliffe, 1970) is a major improvement over the
goodness-of-fit statistics previously discussed because it di-
rectly quantifies the amount of bias in a model (Pearson’s
correlation coefficient, for example, is not sensitive to addi-
tive and multiplicative biases). However, it does not quantify
how well the aleatory variability sigma of the observations is
predicted by the models.

Although the LH method was proven to be a robust ap-
proach for ranking the candidate GMPEs, its dependence on
data size and subjectivity in choosing the threshold LH value
led Scherbaum et al. (2009) to propose the LLH method that
overcomes these weaknesses. This method treats GMPEs
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as probability distributions by means of their medians and
standard deviations. Because of the specific features of the
ground-motion dataset used in testing, this method may favor
GMPEs with larger standard deviations as they can predict
outlier observations with higher probabilities. Such a case
can be observed, for example, during the testing of two
GMPEs having fairly similar median estimations and differ-
ent standard deviations. The LLH method can lead to better
performance of the predictive model with larger sigma, in
particular, if the observed data are accumulated away from
the median estimations of the two GMPEs. Consistent with
the underlying theory in LLH, the competing predictive
model with larger sigma would yield larger probabilities of
occurrence indicating that it can capture these outliers better
than its alternative.

The previous discussions about LLH are illustrated by
a case study as presented in Figure 1. Figure 1a,b shows ob-

served versus estimated peak ground acceleration (PGA) data
in natural logarithms for two candidate GMPEs, Akkar and
Çağnan (2010) and Özbey et al. (2004), that are designated
as models A and B, respectively. The observed dataset is ex-
tracted from a strong-motion databank that is compiled for
the Earthquake Model of the Middle East (EMME) project;
detailed information about this databank is discussed in the
latter sections of the paper. The scatter plot in the second row
compares the median estimations of these two models for the
same dataset, indicating almost identical median trends. The
almost exact matching of median estimations of the two
GMPEs is also verified by calculating the model efficiency
coefficient, E (Nash and Sutcliffe, 1970). The E values from
models A and B are the same (63%). The standard deviation
of model A (σmodelA � 0:832) is larger than that of model B
(σmodelB � 0:599). The LLH testing results of these GMPEs
for models A and B are 1.91 and 2.21, respectively, for the

(a) (b)

(c)

Figure 1. Natural logarithms of observed versus estimated peak ground acceleration (PGA) data corresponding to (a) models A and (b) B.
Panel (c) shows scatter plot comparisons of the ground-motion estimations of these two models for the observed data. The sigma values of
models A and B are 0.832 and 0.599, respectively.
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given dataset. This indicates that LLH favors model A against
the performance of B (smaller LLH values can be interpreted
as the accurate description of aleatory variability posed
by the ground-motion dataset). We note that, of the same
GMPEs, the LLH method would have chosen the GMPE with
smaller sigma if the observed data displayed a closer distri-
bution to the median estimations of the considered GMPEs.

Discussions of the LLH method in the previous para-
graphs indicate that this method (as well as its predecessor,
the LH method) focuses on selecting a suite of GMPEs that
can accurately represent the aleatory variability of the
ground-motion dataset used in testing. As given in the pre-
vious case study, this objective may favor GMPEs with large
sigma that may result in conservative probabilistic seismic
hazard for long-return periods (Restrepo-Velez and Bommer,
2003). The proposed method provides an alternative ap-
proach to describe the aleatory variability featured by the
ground-motion dataset. The dispersion of the ground-motion
dataset and uncertainty of the estimations computed from the
GMPE are considered together, which is achieved by comput-
ing the occurrence probabilities of differences between the
observed data and a range of model estimations that are de-
scribed for an interval of sigma values. Besides, the method
accounts for model bias by using a factor computed from
residual analysis. The method then combines these two sep-
arate effects as an index to rank the overall performance of
GMPE. The effects of aleatory variability and model bias
can also be considered separately depending on the specific
purposes of the PSHA study. The derivation of the proposed
method, as well as its specific properties, is discussed in the
subsequent sections of this paper.

Proposed Testing and Ranking Method

The highlighted observations on the likelihood methods,
as well as other statistical measures, motivated us to present
an alternative testing-and-ranking methodology that can lead
to a practical and robust strategy for selecting the most ap-
propriate set of GMPEs for a given ground-motion dataset.
Our interpretation from background studies advocate that
a versatile ranking-and-selection procedure should account
for the influence of sigma on the estimated ground motions
and measure the bias between the observed data and median
estimations. In our opinion, these features are the central as-
pects for detecting a proper set of GMPEs to be used in PSHA
that serve for different objectives, such as site-specific or
regional studies. Moreover, the competency of the method
should not be limited to the data size because obtaining large
amounts of ground-motion data might not be possible for
some seismic-prone regions.

We call our proposed methodology the Euclidean dis-
tance-based ranking (EDR) method as it uses the Euclidean
distance (DE) definition given in equation (1). Euclidean dis-
tance is a statistical index where the square root of a sum of
squares of the differences between N data pairs (pi; qi) is
calculated. The parameters pi and qi in equation (1) desig-

nate the observed and estimated ground-motion data in our
methodology. In the proposed ranking method, the DE def-
inition is slightly modified considering some basic probabil-
ity rules to account for the criteria mentioned in the previous
paragraph. These modifications and the theory behind are
discussed in the following subsections:

DE2 �
XN
i�1

�pi − qi�2: (1)

Consideration of Sigma: Uncertainty in Ground-
Motion Estimations

While considering the influence of standard deviation
sigma, an analogy is made from the implementation of
GMPEs in PSHA. The GMPEs are used for a range of sigma
values in PSHA to address the randomness in ground-motion
estimations. In the proposed methodology, the estimated
ground-motion intensity for a single data point (that consists
of a certain magnitude, distance, style-of-faulting, and site
class) is assumed to take a set of values that is computed from
a predetermined range of standard deviation of the consid-
ered GMPE. In other words, for a single observed data point,
the candidate GMPE can estimate a range of values due to the
aleatory variability in ground motions. The differences be-
tween the observed data point and the range of estimations
for that single point result in a probability distribution. Our
procedure considers this distribution while assessing the per-
formance of the candidate GMPE under the ground-motion
dataset. The following paragraphs describe the background
theory of this approach.

The EDR method assumes that the natural logarithm of
the predictive model, as well as the Euclidean distances com-
puted for each data point, is normally distributed. Let D in
equation (2) denote the difference between the natural log-
arithms of an observed (a) and estimated (Y) data point.
In this expression, a is scalar quantity (single observation)
whereas Y, the estimator for a predictive model, is a Gaussian
random variable with mean, μY , and variance, σ2

Y . From the
basic principles of the summation of random variables,D can
be proven to be a normally distributed variety (Devore, 2004)
with parameters given in equations 3a and 3b:

D � a − Y (2)

μD � a − μY (3a)

σ2
D � σ2

Y: (3b)

For each single point, the square of D values contribut-
ing to DE are non-negative. If we seek to establish an anal-
ogy between D and DE, we must consider the probability
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distribution of the absolute values of D [i.e., Pr�jDj�]. Equa-
tion 4 shows the probability of jDj being less than a certain
value d [i.e., Pr�jDj < d�], which is actually the difference
between Pr�D < d� and Pr�D < −d� as shown in Figure 2.
The parameter Φ denotes the normal cumulative distribution
function in equation (4). This equation will be used to derive
the probability distribution of jDj:

Pr�jDj < d� � Pr�D < d� − Pr�D < −d�

� Φ
�
d − μD

σD

�
− Φ

�
−d − μD

σD

�
: (4)

For discrete values of D, which are denoted by dj in our
terminology, the occurrence probability of dj [i.e., Pr�dj�] is
described within an infinitesimal bandwidth dd around dj
[i.e., Pr�dj − dd=2 < D < dj � dd=2�]. As the method con-
siders the occurrence probabilities of dj through the analogy
made between DE and D, we therefore modify this proba-
bility as Pr�jDj < jdjj�. Such a relationship can be derived
by making use of equation (4), and it is given in equation (5).
Figure 3 and its caption describe the meanings of each term
in equation (5):

Pr�jDj < jdjj�

� Pr
�
jdj −

dd
2
j < jDj <

����dj � dd
2

����
�

� Pr
�
jDj <

����dj � dd
2

����
�
− Pr

�
jDj <

����dj − dd
2

����
�
: (5)

The total occurrence probability for a set of jdjj values is
called modified Euclidean distance (MDE) in our procedure.
Equation (6) defines the discrete modified Euclidean dis-
tance (MDEd) when jDj is described in discrete points. In
this equation, n is the number of discrete points that depends
on the bandwidth of dd (Fig. 3c,d) and the maximum value
of jdj (i.e., jdjmax). If jDj is assumed to be continuous, the
integral expression given in equation (7) is used to calculate
the continuous modified Euclidean distance (MDEc):

MDEd �
Xn
j�1

jdjj Pr�jDj < jdjj� (6)

MDEc �
Z jdjmax

0

d×
1������

2π
p

×σD

×exp
�
−�d−μD�2

2σ2
D

�
×dd

�
Z jdjmax

0

d×
1������

2π
p

×σD

×exp
�
−�−d−μD�2

2σ2
D

�
×dd:

(7)

MDE can be considered as a probability-based average
that is used as an index to account for the effect of sigma
while testing the performance of GMPEs under a given
ground-motion dataset (equations 6 and 7). The entire meth-
odology is based on the Euclidean distance concept that is
very similar to residual analysis. We preferred Euclidean dis-
tance instead of residual analysis, as it results in non-negative
differences between observations and estimations that can be
easily transformed into an index.

For practical applications of our method, we suggest that
jdjmax value should be selected in accordance with the fol-
lowing relationship:

jdjmax � max�jμD � x × σDj�: (8)

In equation (8), x denotes the multiplier of sigma and
jdjmax depends on the value of this parameter. If x is selected
as 3, our procedure would approximately cover 99.7% of the
differences between the observation and estimations of a can-
didate ground-motion model, provided that the normality
assumption holds for the considered variables in the method-
ology. We note that the distribution of D is unsymmetrical
about zero unless there is a one-to-one match between the ob-
served data point and the corresponding median estimation.
Conversely, the jdjj pairs (i.e., jdjj and−jdjj) are always sym-
metric about zero. These remarks are illustrated in Figure 3c.

Table 1 provides an insight about the variation of MDE
for a set of x and dd values by considering an arbitrary
ground-motion model and a sample dataset. The MDE values
are computed by considering the probability distribution
of D either as discrete (MDEd) or continuous (MDEc). The
results given in Table 1 are derived for μD � 0:75 and

(a) (b) (c)
D
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D D

D ddD dD dd d

Figure 2. Probability distribution definitions given in equation (4): (a) Pr�D < d�, (b) Pr�D < −d�, and (c) Pr�jDj < d�.
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σD � 0:5. They suggest that when x is 3 and the bandwidth
of dd is 0.1, MDEd and MDEc almost overlap each other.
Thus, taking x � 3 and dd � 0:1 can be considered as suffi-
cient for reliable calculation of MDE while testing the per-
formance of a candidate GMPE. We also conducted numerous
other case studies for various μD − σD pairs and they did not
change the major observations presented in Table 1. There-
fore, choosing x > 3 to cover a larger ground-motion estima-
tion range or taking dd < 0:1 for a better approximation of

continuous probability distribution of D will only increase
the computational burden but will not result in improvements
in the computed MDE.

We also conducted sensitivity analyses by generating syn-
thetic ground-motion datasets to observe the variations in MDE
when the intricate relation between the distributions of ground-
motion datasets and GMPE estimations are of concern. These
sensitivity analyses indicated that the median and standard
deviation of ground-motion model estimations play a signifi-
cant role on MDE values. Based on our sensitivity analyses, we
determine that the index varies between 0.5 and 3.2 depending
on the consistency of above two parameters with the overall
trend and scatter of the observed ground-motion dataset.
Details of discussions on the results of sensitivity analyses are
given in Appendix A. Given two GMPEs, the MDE index
computed for the small-sigma predictive model will always be
smaller with respect to the other, provided that the median
estimations of these GMPEs follow similar patterns. The theo-
retical proof of this assertion is given in Appendix B.

Consideration of Trend between Observed and
Estimated Data: Model Bias

A significant trend between the observed data and
corresponding median estimations can be interpreted as the

(a) (b)

(c) (d)
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Figure 3. Probability distribution definitions given in equation (5): (a) Pr�−jdj � dd=2j < D < jdj � dd=2j�;
(b) Pr�−jdj − dd=2j < D < jdj − dd=2j�; (c) difference between the probabilities given in (a) and (b); total discrete probability,
Pr�jDj < jdjj�, and (d) probability density function of jDj. The probabilities of (a) and (b) are equivalent to Pr�jDj < jdj � dd=2j� and
Pr�jDj < jdj − dd=2j�, respectively. The gray shaded area in (d) represents the summation of the discrete probabilities in negative
and positive sides of the probability-density function in (c) [i.e., Pr�jDj < jdjj�]. D is normally distributed random variable with μD
and σ2

D while jDj is a non-negative random variable.

Table 1
Comparison of Modified Euclidean Distance (MDE) Values
for Discrete and Continuous Probability Distributions by

Considering the Variations in Bandwidths (dd) and Number
of Sigma �x�
MDEd*

x dd � 0:1 dd � 0:05 dd � 0:01 MDEc
†

3 0.7754 0.7762 0.7761 0.7761
4 0.7796 0.7793 0.7792 0.7792
6 0.7797 0.7794 0.7793 0.7793
8 0.7797 0.7794 0.7793 0.7793

*MDEd: MDE values for discrete probability (calculated from equation 6)
†MDEc: MDE values for continuous probability (calculated from

equation 7)
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biased representation of the ground-motion data by the can-
didate predictive model. In our method, we introduce the κ
parameter (equation 9a) to measure the level of bias between
the observed and estimated data. Unlike MDE, this parameter
should be computed using the entire ground-motion data-
base. The κ parameter is the ratio of original (DEoriginal)
and corrected (DEcorrected) Euclidean distances that are given
in equations (9b) and (9c). We note that the squared Euclid-
ean distances in equations (9b) and (9c) are equivalent to the
sums of the squared residuals:

κ � DEoriginal

DEcorrected
(9a)

DE2
original �

XN
i�1

�ai − Yi�2 (9b)

DE2
corrected �

XN
i�1

�ai − Yc;i�2: (9c)

In the above equations, ai and Yi are the natural loga-
rithms of the ith observed and estimated data, respectively. N
denotes the total data number in the assembled ground-
motion database. The parameter Yc;i stands for the corrected
estimation of the ith data after modifying Yi with the straight
line fitted on the logarithms of the estimated and observed
data. Equation (10) shows the calculation of Yc;i:

Yc;i � Yi − �Yfit;i − ai�; (10)

where Yfit;i is the predicted value from the regression of Yi

on ai.
We note that the optimum value of κ is 1.0, and it occurs

when estimations assume very close values to the corre-
sponding observations. Illustrations for the computation of κ
for two representative predictive models (Models 1 and 2)
are given in Figure 4. The κ values of the example cases in
Figure 4 are 1.18 and 3.41 for Models 1 and 2, respectively.
As inferred from the panels on the left in this figure, κ in-
creases when the trend in the fitted straight line on ai versus
Yi becomes more noticeable, which indicates the dominant
bias in the estimations of the considered GMPE (Model 2 for
the cases given in Fig. 4). In our ranking method, κ penalizes
the predictive model by comparing the DE values obtained
from original and corrected residual trends. The overall cal-
culation of EDR index is described in the subsequent section.

Final Form of the EDR Index and Its Use in Ground-
Motion Logic-Tree Applications

The calculations presented for a single data point while
describing MDE should be repeated for the entire ground-
motion database as the EDR index must represent the overall
probability of the differences between the estimated and ob-
served data. This probability should then be modified by κ to

penalize the considered predictive model according to the
level of bias detected between the median estimations and
overall trend in observed data. To eliminate the dependency
of EDR results on data size, the compound effect of κ and
MDE should be normalized by the total data number, N, in
the ground-motion dataset. Equation (11) shows the math-
ematical expression of EDR. We note that EDR index is the
square root of the expression given in equation (11). A smaller
EDR value implies better representation of the ground-motion
dataset by the predictive model. A computer program for cal-
culating the EDR index is available in theⒺ electronic supple-
ment to this article:

EDR2 � κ ×
1

N
×
XN
i�1

MDE2
i : (11)

Implementation of EDR: Influence of κ and MDE
on the Ranking of GMPEs

Our main emphasis to this point has been the consider-
ation of sigma (aleatory variability) and detection of model
bias on the overall observed data for the optimum ranking of
candidate GMPEs. This section presents a case study to show

(a) (b)

(c) (d)

Figure 4. Original scatter plots of the natural logarithms of ob-
served data, a, and corresponding median estimations, Y, obtained
from Models 1 and 2 (panels [a] and [c], respectively). These scatter
plots also show thick straight lines fitted on the logarithms of ob-
served and estimated data (their equations are given on the lower right
corner of each plot). Panels (b) and (d) show the relationship between
the corrected median estimations (Yc) and observed data for Models
1 and 2, respectively. Corrected estimations of each model are calcu-
lated by using the corresponding straight-line fits given on the panels
(a) and (c). The κ value for each model is the ratio of DE values com-
puted from original and corrected median estimations.

A New Procedure for Selecting and Ranking GMPEs 1075



how the proposed procedure accounts for these two compo-
nents separately while ranking the predictive models. The
case study uses an empirical ground-motion dataset com-
piled for ground-motion model selection and ranking under
the framework of the EMME project. The database is com-
prised of 1703 horizontal-component accelerograms from
active shallow crustal regions of Turkey (984 records), Iran
(602 records), Caucasus (100 records), Jordan (6 records),
and Pakistan (11 records). The moment magnitude (Mw) ver-
sus Joyner–Boore distance (RJB; closest distance to the sur-
face projection of fault rupture) scatter plots of the database
employed in terms of country, style-of-faulting, and site class
distributions are given in Figure 5. The information revealed
from the scatter diagrams in Figure 5 indicates that Turkey
and Iran are the major data providers to our database. The
dominant rupture mechanism is strike-slip (SS) that is fol-
lowed by reverse (R) and normal (N) fault events. The num-
ber of reverse and normal style-of-faulting accelerograms is
close to each other, but strike-slip recordings are approxi-
mately equal to the total number of normal and reverse fault-
ing data. Accelerograms of B and C soil categories according
to Eurocode 8 (EC8; CEN, 2004) site classification dominate
the site conditions. Notwithstanding, there are quite a few
accelerograms (14% of total data) satisfying rock conditions
(described as site class A in EC8) in the database. Almost
95% of the accelerograms pertain to events with hypocentral
depths less than 30 km as shown in Figure 6. Events with
hypocentral depths greater than 30 km (up to 60 km) are lo-
cated either in eastern Turkey or various parts of Iran. None
of the deep events from Iran fall into the Makran region, the
seismotectonic settings of which generate subduction-type
earthquakes (Engdahl et al., 2006). The event- and record-
based information of the database was compiled from vari-

ous local and international sources that are listed in Table 2.
Style-of-faulting and important fault-rupture geometries of
almost all events were determined from double-couple fault
solutions that are mainly retrieved from global centroid mo-
ment tensor (GCMT) solutions of Harvard (see Data and Re-
sources). To this end, we can advocate that the computed
extended-source distance metrics (i.e., RJB and RRUP: closest
distance to the ruptured fault surface) are fairly reliable. This
feature of our database is important because most of the re-
cent GMPEs make use of extended-source distance measures
while describing the variation of ground-motion amplitude
as a function of source-to-site distance. We implemented a
uniform data processing procedure that is based on fourth-
order acausal Butterworth band-pass filtering. The high-pass
and low-pass filter cutoff values were mainly identified by
following the discussions in Akkar and Bommer (2006) and
Akkar et al. (2011).

The candidate GMPEs for testing are derived for shallow
active crustal regions. They are compiled from ground-
motion models that are developed either from local databases
or from datasets that are comprised of accelerograms from
multiple countries or regions. The latter ground-motion mod-
els are denoted as global predictive models among the model
developers. Figure 7 presents the country-based distributions
of ground-motion datasets used in developing the candidate
GMPEs considered in our study. As it can be inferred from
these statistics, global models mainly contain data from one
or two countries or regions. The selected GMPEs satisfy the
Cotton et al. (2006) criteria that set a priori rules to preserve
a certain level of quality control on the selected GMPEs.
These criteria are further improved by Bommer et al. (2010),
but we did not use them in order to avoid limiting the number
of candidate GMPEs. We note that the GMPEs developed by

(a) (b) (c)

Figure 5. Magnitude (Mw) versus Joyner–Boore distance (RJB) scatter plots of the considered database in terms of (a) country, (b) rupture
mechanism, and (c) site class distributions. Eurocode 8 (EC8; CEN, 2004) site classification is adopted for soil definitions: site classes A, B,
C, and D refer to VS30 (average shear velocity in the upper 30 m of the soil profile) intervals of VS30 ≥ 800 m=s, 360 m=s ≤ VS30 < 800 m=s,
180 m=s ≤ VS30 < 360 m=s, and VS30 < 180 m=s, respectively. Country or region abbreviations TR, IR, CA, JO, and PA stand for Turkey,
Iran, Caucasus, Jordan, and Pakistan, respectively. The abbreviations SS, R, and N denote strike-slip, reverse, and normal style-of-faulting in
the middle panel. Numeric values next to each legend describe the number of data in that group.
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Zhao et al. (2006) and Ambraseys et al. (2005) do not fully
comply with the Cotton et al. (2006) criteria. Zhao et al.
(2006) lack the complete documentation of their model and
ground-motion dataset. The model developed by Ambraseys
et al. (2005) is recently superseded by the GMPE published in
Akkar and Bommer (2010). We did not disregard these two
GMPEs because they were evaluated in other regional hazard
studies (e.g., Delavaud, Cotton, et al., 2012). The important
features of the 14 selected GMPEs are listed in Table 3. Most
of these GMPEs use extended-source distance measures in
their functional forms. Their Mw range generally varies be-
tween 5 and 7.5. They are devised for estimating PGA and
5%-damped pseudospectral acceleration (PSA). The selected
ground-motion models generally account for major rupture
mechanisms and their soil amplification terms are either con-
tinuous functions of VS30 or they make use of generic site
definitions via dummy variables. The selected GMPEs use
different horizontal component definitions, most of which
are geometric mean (GM) or rotation independent average
horizontal components (GMRotI50 defined in Boore et al.,

2006). We used the original source-to-site distance, site class,
and horizontal component definition of each ground-motion
model while testing their performance. We overruled this
approach for GMPEs that use GMRotI50 and treated their
ground-motion estimations as GM because, on average, the
predicted ground motions from these two horizontal compo-
nent definitions do not differ from each other (Beyer and
Bommer, 2006). We note that while computing the ground-
motion estimations of NGA GMPEs we used the software
developed by D. M. Boore (one of the bi-products of Kakla-
manos et al., 2010 report and Kaklamanos et al., 2011 pa-
per). While testing the selected GMPEs, we utilized the entire
database without considering the magnitude and distance
limitations imposed by each ground-motion model. The gen-
eral practice in many PSHA studies requires the extrapolation
of GMPEs outside of their magnitude and distance ranges as
few predictive models can satisfy all the magnitude and dis-
tance constraints imposed by each specific project. This fact
is the major motivation behind the above decision and it
is also implemented by other studies (e.g., Arango et al.,
2012; Delavaud, Cotton, et al., 2012).

Figure 8 shows the testing results of candidate GMPEs
for a spectral period band ranging from T � 0:0 s (PGA)
to T � 2:0 s. We used eight discrete period values (i.e.,
T � 0:0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5, and 2.0 s) within this
period band in order to fully understand the performance of
each candidate model under the assembled ground-motion
database. Figure 8a,b shows the components of EDR index

separately (i.e.,
�����������������������������
1
N

PN
i�1 MDE2

i

q
and

���
κ

p
) to understand the

significance of sigma (ground-motion uncertainty) and
agreement between the median estimations and overall data
trend (model bias) for the general performance of each

(a) (b)

Figure 6. Hypocentral depth distributions in terms of (a) accel-
erograms and (b) earthquakes.

Table 2
Major Information Sources for Each Country-Based Strong-Motion Data (see also Data and Resources)

Database Country
Sources of

Strong-Motion Data* Catalog References†
Sources of Fault
Plane Solutions‡

Turkey AFAD
ESMD
IERREWS

Akkar et al. (2010), Sandıkkaya et al. (2010),
Erdik et al. (2003), Harmandar (2009)

Akkar et al. (2010), NEMC

Iran ISMN
ESMD

EMME and SHARE progress reports (2011) Ghasemi et al. (2009), GCMT

Caucasus GNAS
NSSPRA
ESMD

EMME and SHARE progress reports (2011) WSM, GCMT

Pakistan PMD
WAPDA
MSSP

EMME progress report (2011) GCMT

Jordan JSO EMME progress report (2011) GCMT

*AFAD, Disaster and Emergency Management Presidency; ESMD, European Strong-Motion Data; GNAS, Georgian National
Academy of Sciences; IERREWS, Istanbul Earthquake Rapid Response and Early Warning System; ISMN, Iran Strong Motion
Network; JSO, Jordan Seismological Observatory; MSSP, Micro Seismic Study Project under Pakistan Atomic Energy
Commission; NSSPRA, National Survey for Seismic Protection under the Government of the Republic of Armenia; PMD,
Pakistan Meteorological Department; WAPDA, Pakistan Water and Power Development Authority

†EMME, Earthquake Model of the Middle East Region project; SHARE, Seismic Hazard HARmonization in Europe project
‡GCMT, Global Centroid Moment Tensor; NEMC, National Earthquake Monitoring Centre; WSM, World Stress Map Project
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candidate GMPE. The final panel on this figure, Figure 8c,
displays the product of these two components: the actual
EDR index. Table 4 presents a similar type of information as
Figure 8. This table lists the average values of EDR compo-
nents, as well as the average EDR value computed for
each predictive model over the entire period range of interest.
The immediate observation from Figure 8 and Table 4 is
that given the ground-motion database the performance of
GMPEs shows differences in terms of addressing the aleatory
variability and model bias. For example, AB10 and Zetal06,
as well as CF08 and CY08, perform better while addressing
the aleatory variability for the considered strong-motion
database. The ground-motion models Betal10, AC10, AB10,
and CF08 better represent the general trend of the observed
data with respect to other candidate GMPEs. When the influ-
ence of these two factors is considered together, the method
favors the performances of AB10, Zetal06, AC10, and Be-
tal10. We believe that these observations are important since
PSHA studies can follow different strategies depending on
the specific objectives of each project. For example, site-
specific hazard projects may prefer separate considerations
of sigma influence and success of GMPEs in estimating rea-
sonable median ground motions. To this end, such projects
may design two GMPE logic trees having different sets of
GMPEs that perform better in median ground-motion estima-
tions and sigma. Separate considerations of MDE and κ in-
dices may be useful for objective-specific hazard studies. In
particular, MDE would provide valuable information in site-
specific hazard studies if the concern is very long return peri-
ods (e.g., TR > 2500 years). It could also be speculated that
the overall EDR index can be more favorable to identify the
most suitable set of GMPEs for regional hazard studies be-
cause fairly better performance of GMPEs in representing
the overall data trend and aleatory variability may yield more
realistic hazard results for return periods that are of interest
by regional hazard programs (e.g., TR ≤ 2500 years). In
passing, we note that a separate regional project (SHARE)
designed the ground-motion logic tree for PSHA by selecting
AB10, Zetal06, CY08, and CF08 that are also listed among

the top-ranked GMPEs in our study (see details in Delavaud,
Cotton, et al., 2012 for SHARE GMPE logic tree). The
SHARE project proposed these GMPEs by a two-step ap-
proach that is composed of expert elicitation and model
evaluation through LLH methodology. The ground-motion
dataset used in SHARE is different than the one used in
our paper, which may suggest the proximity of LLH and EDR
methods, even if they differ conceptually. The other impor-
tant observation to note is the effectiveness of statistical tools
(such as EDR or LLH) in providing valuable supplementary
information to hazard experts while deciding on the most
suitable predictive models for the specific purposes of
PSHA studies.

Another interesting observation from the testing results
is the relatively better performance of GMPEs with simpler
functional forms (i.e., predictive models containing the most
basic estimator parameters to describe the effects of source,
path, site, and rupture mechanism). Examples to such simple-
format GMPEs are AB10, AC10, CF08, or Zetal06.We believe
that the metadata of the basic estimator parameters used by
these GMPEs was elaborated in a careful manner prior to their
complete development. In other words, their strong-motion
databases (either local or global) can be considered as reliable
in that sense. The reliability of metadata information is im-
portant, and if it is inconsistent (or rather outdated), then pre-
dictive models can yield lower performance even if their
functional forms are simpler. Typical examples to this case
are KG04 (derived from an older version of the Turkish
strong-motion database, which is recently updated as docu-
mented in Akkar et al., 2010) and Fetal03 (whose metadata
information for the same events features inconsistencies with
the database used in this study that is compiled from the most
recent seismological information). Ground-motion models of
complex functional forms (more complicated NGA models
such as AS08, CB08, and CY08) require reasonable assump-
tions (such as those suggested in Kaklamanos et al., 2011)
for most of their estimator parameters. This additional effort
is necessary since the current strong-motion databases, even
if they are assembled after significant efforts, would not con-
tain all the required metadata information for the consistent
execution of such GMPEs. Thus, the testing methods would
not be able to acknowledge the merits of such complicated
models unless the ground-motion and seismic-source infor-
mation is determined in all details for the study area. Kakla-
manos and Baise (2011) drew the same conclusion on the
model-complexity versus model-performance stating that
the more complicated NGA models do not have a predictive
improvement over those of the simpler. Our experience in
strong-motion database and earthquake catalog compila-
tion suggests that the state of seismological knowledge in
many seismic-prone regions is currently insufficient for the
effective use of complex GMPEs. However, this comment
is not meant to discourage the use or development of
such high-quality GMPEs. On the contrary, we fully support
the seismological community inconducting long-term re-
search to improve the metadata information for developing

Figure 7. Countries or regions contributing to the databases
used in the development of candidate GMPEs tested in this study:
CA, California; EU, Europe; GR, Greece; IR, Iran; IT, Italy; J, Japan;
ME, Middle East; TA, Taiwan; TR, Turkey; WE, West Eurasia; and
WUS, western United States.
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well-constrained GMPEs to better address the contribution of
source, path, and site effects in hazard estimations.

Summary and Conclusions

In this paper, we propose an alternative testing pro-
cedure for testing and ranking of GMPEs that can be used
for designing GMPE logic trees in PSHA studies. The method
is based on the Euclidean distance concept that carries sim-
ilar features with the conventional residual analysis. The
method can be a useful guide to build ground-motion logic
trees from properly ranked GMPEs, if it is used together with
other well-designed testing methods, as well as visual tools,
such as residual analysis.

The proposed procedure accounts for aleatory variability
in ground-motion estimations (through standard deviations
of GMPEs). It also considers the bias between median
estimations and observed ground-motion data (model bias).
The bias between median ground-motion estimations and
general variation of observed data is identified by the κ
parameter, which makes an analogy to the residual analysis

concept. The uncertainty in ground-motion variability is
addressed by finding the probability distribution of the dif-
ferences between the observed data and corresponding esti-
mations for a range of sigma values. This approach differs
from that which was employed in the LLH method (Scher-
baum et al., 2009) because LLH computes the occurrence
probability of the observed data point by using the corre-
sponding estimation that is assumed to be log-normally dis-
tributed with median and sigma values of the candidate
GMPE.

We presented a case study to illustrate the general fea-
tures of the proposed procedure using a database that is
compiled from the shallow active crustal recordings of the
Middle East, Caucasus, and Pakistan. We selected 14 GMPEs
for the presented case study that are suitable for estimating
the ground-motion intensities of seismotectonic features
mimicked by the strong-motion database. The results of the
case study suggest that the aleatory variability (i.e., sigma)
and the bias between median estimations and observed
ground-motion data (model bias) play separate roles in the
performance of GMPEs to properly represent the selected
ground-motion dataset. Our procedure is capable of provid-
ing this useful information to the seismic hazard expert. Such
information can be used in various ways to establish the
GMPE logic tree depending on the objective of the hazard
project, which can be either forecasting the regional or site-
specific hazard. The case study also indicated that GMPEs
having simpler functional forms rank better than those whose
predictive equations contain complex estimator parameters.
If the metadata of the strong-motion database lacks infor-
mation about these estimator parameters, they should be
computed by making reasonable assumptions. However,

Figure 8. Separate EDR components: (a)
�����������������������������
1
N

PN
i�1 MDE2

i

q
,

(b)
���
κ

p
, and (c) the actual EDR index.

Table 4
Performance of Tested Ground-Motion Prediction
Equations (GMPEs) for each Individual Component
of Euclidean Distance-Based Ranking (EDR), As

Well As the EDR Index

GMPEs
������������������������������
1
N

P
N
i�1 MDE2

i

q ���
κ

p
EDR

AB10 1.05 1.10 1.15
AC10 1.14 1.09 1.24
Aetal05 1.22 1.19 1.45
AS08 1.22 1.26 1.54
BA08 1.14 1.25 1.42
Betal10 1.17 1.06 1.25
CB08 1.18 1.31 1.55
CF08 1.12 1.13 1.27
CY08 1.12 1.15 1.29
Fetal03 1.60 1.59 2.55
Getal09 1.16 1.21 1.41
KG04 1.40 1.59 2.24
Oetal04 1.27 1.16 1.46
Zetal06 1.08 1.14 1.23

The reported indeces are the averages over spectral ordinates
of selected period range. The top four best performing models
are shown in bold.
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no matter how reasonable these assumptions are, they im-
pose additional uncertainty to the estimations of such com-
plicated GMPEs that, in turn, affects their performances.

Data and Resources

This study uses the ground-motion database compiled
for the EMME project. The strong ground-motion data
in the EMME database is obtained from the following
sources: AFAD at http://daphne.deprem.gov.tr/2K/daphne
_v4.php, ESMD at www.isesd.hi.is/ESD_Local/frameset
.htm, IERREWS at http://www.koeri.boun.edu.tr/Research/
Early_WarnIng_System_13_139.depmuh, ISMN at www
.bhrc.ac.ir/portal/Default.aspx?tabid=635, GNAS at www.
science.org.ge/english.html, NSSPRA at www.adrc.asia/
highlights/041/nsspra.htm, PMD at www.pmd.gov.pk/,
WAPDA at www.wapda.gov.pk/htmls/auth-index.html, MSSP
at www.paec.gov.pk/, JSO at www.nra.gov.jo/index.php?
option=com_content&task=view&id=83&Itemid=122 (all were
last accessed August 2012).

The catalog (metadata) information of the recordings in
the database is retrieved from sources of Erdik et al. (2003),
Harmandar (2009), Akkar et al. (2010), and Sandıkkaya et al.
(2010), and EMME and SHARE progress reports (2011)
at http://emme‑gem.org/, and www.share-eu.org/, respec-
tively (all websites were last accessed August 2012). The
main sources for the double-couple fault plane solutions are
Ghasemi et al. (2009), Akkar et al. (2010), GCMT at www.
globalcmt.org/, NEMC at www.koeri.boun.edu.tr/sismo/
indexeng.htm, and WSM at http://dc-app3-14.gfz-potsdam.
de/ (all websites were last accessed August 2012).

The software that computes the ground-motion estima-
tions of NGA GMPEs was obtained from the website of D. M.
Boore at www.daveboore.com/ (last accessed August 2012).
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Appendix A

Assuming log-normal distribution, the synthetic datasets
are generated for various number of data, which varies be-
tween 30 and 210, in increments of 30. The synthetics mimic
the observed ground-motion datasets in these analyses.
Figure A1 shows the distributions (histograms) of a
sample set of synthetic datasets generated for μ � 0:5 and

(a) (b)

(c) (d)

(e) (f)

(g)

Figure A1. A sample set of synthetic datasets with various data
sizes (NS).
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σ � 0:5 (median and standard deviation of the generated
synthetic dataset, respectively). The synthetic data that
represent the observed values are plotted in logarithmic scale
in this figure.

Figure A2 shows the variations in MDE (i.e.,�����������������������������
1
N

PN
i�1 MDE2

i

q
) in terms of different sample sizes of syn-

thetic data. The median, μ, is taken as 0.5 in all cases whereas
σ is varied as 0.5, 0.7, 0.8, and 1.0 while generating the syn-
thetic data for each set. The standard deviations of model
estimations (σY) are assumed to follow the standard devia-
tions of the generated synthetic datasets (i.e., σY � σ).
The medians of model estimations (μY) systematically take
different values in each case. Four different μY levels are con-
sidered in the sensitivity analyses: μY � μ, μY � μ� σ,
μY � μ� 2σ, and μY � μ� 3σ. The plots in Figure A2
summarize the changes in MDE for the entire sensitivity
analyses by making use of above cases.

One can infer that MDE is independent of data size from
the plots in Figure A2. When median and standard deviations
of model estimations are very similar to the average trend and
scatter of observed data (i.e., μY � μ and σ � σY), MDE at-
tains values between 0.5 and 1.2 depending on the level of
scatter in the observed data. In other words, as the scatter in
observed data increases MDE starts to increase even if the
standard deviations of model estimations follow very similar

trends to those of observed data. MDE varies between 1.5 and
3.2 when the model estimations significantly differ with re-
spect to the observed data (i.e., μY � μ� 3σ). The increase
in MDE depends on the dispersion of observed ground-
motion dataset as in the previous case.

Appendix B

The Euclidean distance-based ranking (EDR) method se-
lects jdjmax by considering the area under the normally dis-
tributed parameter D that gives the difference between the
absolute value of natural logarithms of observed and esti-
mated data points (equation 2). The value of jdjmax depends
on the standard deviation of ground-motion prediction equa-
tion (GMPE) (equation 8). The probabilities of discrete dj
that are greater or less than jdjmax are almost zero if the area
to be considered under this probability distribution is deter-
mined as 99.7% as suggested in the paper. Figure B1 shows
the normally distributed D parameters of two models having
the same median estimations but different standard devia-
tions. The standard deviation of Model 2 is greater than that
of Model 1, which results in higher dmax in Model 2 (i.e.,
jdjmax;2 > jdjmax;1). As depicted in Figure B1, dj values that
are close to the medians of both models attain small values
with high occurrence probabilities. The occurrence probabil-
ities of dj values become smaller as they begin shifting

Figure A2. Variation of MDE (i.e.,
�����������������������������
1
N

PN
i�1 MDE2

i

q
) for different scenarios in terms of ground-motion model estimations with different

median (μY ) and standard deviations (σY ), which are adjusted by considering the median (μ) and standard deviations (σ) of generated
synthetic datasets.
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away from the median. When dj takes larger values between
−jdjmax;2 and −jdjmax;1 or jdjmax;1 and jdjmax;2, their occur-
rence probability is almost zero for Model 1 but is still
significant for Model 2. From these discussions and the ex-
pression used for computing MDE (equation 6), one can infer
that MDE value computed for Model 1 will always be smaller
than that of Model 2.
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Figure B1. Comparisons between two ground-motion predic-
tion equations (GMPEs) (predictive models) having the same medi-
ans and different standard deviations
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