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Abstract

Although every implementation of a recent high
frequency multiple scattering solver has displayed a
frequency independent operation count, its numerical
analysis yet remains as a challenging open problem.
This is, in part, due to the absence of detailed in-
formation on the uniform asymptotic expansions of
multiple scattering iterations. Here we address pre-
cisely this issue for a collection of convex obstacles in
both two and three space dimensions and further, as
an application, we present a generalized geometrical
optics solver.

Introduction

Although every implementation of a recent high
frequency multiple scattering solver [1] has displayed
a frequency independent operation count to attain
a prescribed accuracy, its numerical analysis yet re-
mains as a challenging open problem. This is, in part,
due to the absence of detailed information on the
uniform asymptotic expansions of multiple scattering
iterations. Indeed, asymptotic expansions, in their
full generality, are only known for a single convex
obstacle illuminated by a plane-wave incidence [2]
and this, in turn, has given rise to the development
of asymptotically O(1) single-scattering solvers [1],
[3], [4]. Here we extend the results in [2] to encom-
pass a collection of compact strictly convex obstacles
and thereby enable a straightforward extension of the
single-scattering algorithms [3], [4] to accompany the
multiple scattering solver in [1]. Further, as an ap-
plication of our derivations, we present a generalized
geometrical optics solver.

1 Multiple scattering

We consider here the sound soft acoustic scatter-
ing problem [5] from a smooth compact obstacle K
in R

n, n = 2, 3, whose solution can be expressed as
a single-layer potential with unknown density η, the
normal derivative of the total field on ∂K. Although
a variety of integral equations exist for η, for simplic-

ity, we use here

η(x) −

∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K

where G = −2Φ and Φ is the outgoing fundamen-
tal solution to the Helmholtz equation. As is well-
known [1], [5], when the obstacle K consists of finitely
many connect components {Kσ : σ ∈ I}, writing the
preceding equation in component form and inverting
the diagonal part gives rise to an alternative (oper-
ator) equation whose Neumann series solution cor-
responds precisely to multiple scattering; and this,
in turn, can be shown to imply that η is the super-
position over all obstacle paths {Km}m≥0 ⊂ {Kσ :
σ ∈ I} with Km+1 6= Km (rearranged suitably) of
the multiple scattering iterations ηm that recursively
solve on ∂Km the integral equations

η0(x) −

∫

∂K0

∂G(x, y)

∂ν(x)
η0(y) ds(y) = 2

∂uinc(x)

∂ν(x)

and, for m ≥ 1,

ηm(x) −

∫

∂Km

∂G(x, y)

∂ν(x)
ηm(y) ds(y)

=

∫

∂Km−1

∂G(x, y)

∂ν(x)
ηm−1(y) ds(y) .

As is further known, when the obstacles Kσ are
strictly convex and satisfy the visibility and no-

occlusion conditions (cf. [5]), the multiple scattering
iterations ηm admit the factorizations

ηm(x) = eikϕm(x) ηslow
m (x), x ∈ ∂Km. (1)

Here the phase functions ϕm are defined on ∂Km as

ϕm(x) =

{

α · x, m = 0
|x −Xm

m−1(x)| + ϕm−1(X
m
m−1(x)), m ≥ 1

where (Xm
0 (x), . . . ,Xm

m (x)) ∈ ∂K0×· · ·×∂Km are the
(uniquely determined) reflection points that, at each
reflection, specify the geometrical illuminated regions

∂KIL
m , shadow regions ∂KSR

m , and shadow boundaries

∂KSB
m .



2 Asymptotic expansions

The uniform asymptotic expansions of the slow
densities ηslow

m are now summarized in the following.

Theorem (i) ηslow
m ∈ S1

1,0(∂KIL
m × (0,∞)) (see [5],

[2] for the definition of Sµ
̺,σ) and

ηslow
m (x, k) ∼

∑

j≥0

k1−jam,j(x)

where am,j(x) are complex-valued C∞ functions.
(ii) ηslow ∈ S1

2/3,1/3(∂Km × (0,∞)) and

ηslow
m (x, k)∼

∑

p,q≥0

k2/3−2p/3−q bm,p,q(x)Ψ(p)(k1/3Zm(x))

where bm,p,q(x) are complex-valued C∞ functions,
Zm(x) is a real-valued C∞ function that is positive
on ∂KIL

m , negative on ∂KSR
m , and vanishes precisely

to first order on ∂KSB
m . The function Ψ, on the other

hand, is as specified in [2].

3 Numerical example

As an application of this theorem, we present a
comparison of the multiple scattering iterations ηm

and the generalized geometrical optics approxima-

tions ηGO
m defined as

ηGO
m (x) = eikφm(x) k

{

am,0(x), x ∈ ∂KIL
m ,

0, otherwise

(see [5] for the description of am,0). Specifically, Fig-
ure 1 displays the plots of the maximum of µm(x) =
log10[|ηm(x) − ηGO

m (x)|/k] against log10 k (a) on a
fixed compact subset S of ∂KIL

m justifying the first
part of the Theorem (the middle sub-figure), and (b)
over the entire boundary ∂Km verifying the second
part of the Theorem (the bottom sub-figure) for the
given two-ellipse configuration on the periodic orbit
K0,K1 for the specific value m = 8.
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Figure 1: A two-ellipse configuration illuminated
by a plane-wave incidence eikα·x, α = (0, 1).
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