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Abstract
We present an analysis of a recently proposed integral

equation method for the solution of high-frequency elec-
tromagnetic and acoustic scattering problems that deliv-
ers error-controllable solutions in frequency-independent
computational times. Within single scatterer configura-
tions the method is based on the use of an appropriate
ansatz for the unknown surface densities and on suitable
extensions of the method of stationary phase. Extension
to multiple-scattering configurations, in turn, is attained
through consideration of an iterative (Neumann) series
that successively accounts for multiple reflections. Here
we show that the convergence properties of this series in
the high-frequency regime depend solely on geometrical
characteristics. Moreover, for periodic orbits, we explic-
itly determine the convergence rate in the limit of vanish-
ing wavelength, and we present some numerical results
that confirm it as an accurate estimate for finite frequen-
cies.

Introduction
Over the last two decades, accurate and efficient di-

rect numerical schemes have been developed and suc-
cessfully applied to the simulation of electromagnetic and
acoustic wave propagation. However, all of these meth-
ods require the resolution of wavelength, and this re-
stricts their applicability to moderately low frequencies.
For higher frequencies, accordingly, the only practical re-
course is to resort to asymptotic methods (e.g. ray trac-
ing) as these by-pass the need for frequency-dependent
discretizations. These methods, on the other hand, are not
error-controllable since they solve an approximate model
instead of the original equations (e.g. the eikonal equa-
tion instead of the Helmholtz equation or the Maxwell
system).

Recently, an integral equation method featuring error-
controllability and frequency-independent discretizations
has been proposed for surface scattering problems in the
high-frequency regime [1], [2]. Within single scattering
configurations the method is based on the use of an ap-
propriate ansatz for the unknown surface densities and on
suitable extensions of the method of stationary phase. Ex-
tension to multiple-scattering configurations, in turn, is

attained through consideration of an iterative (Neumann)
series that successively accounts for multiple reflections.
Here we show that the convergence properties of this se-
ries in the high-frequency regime depend solely on ge-
ometrical characteristics. Moreover, for periodic orbits,
we explicitly determine the convergence rate in the limit
of vanishing wavelength, and we present a variety of nu-
merical results that confirm it as an accurate estimate for
finite frequencies.

Integral Equations and Multiple Scattering
We consider the problem of evaluating the scattering of

an incident plane wave uinc(x) = eikα·x, |α| = 1, from
a bounded obstacle Ω. For the sake of brevity, we restrict
ourselves to the two-dimensional context for which the
relevant frequency-domain problem is modelled by the
Helmholtz equation

∆u(x) + k2u(x) = 0, x ∈ R
2\Ω; (1)

for definiteness, we assume Dirichlet boundary condi-
tions (TE polarization in electromagnetics)

u(x) = −uinc(x), x ∈ ∂Ω. (2)

An integral equation formulation of (1), (2) is given by

η − Rη = 2∂uinc/∂ν, on ∂Ω. (3)

Here ν is the outward unit normal to ∂Ω, η = ∂u/∂ν is
the surface current, and

Rη(x) = −2

∫

∂Ω

∂Φ(x, y)

∂ν(x)
η(y)ds(y)

where Φ is the radiating free-space Green function.
When Ω = (Ωi)i=1,...,N is a finite union of disjoint

sets, equation (3) takes on the coordinate form

ηi − Riiηi −
∑

j 6=i

Rijηj = fi (4)

where ηi = η|∂Ωi
, fi = (2∂uinc/∂ν)|∂Ωi

, and on ∂Ωi

Rijηj(x) = −2

∫

∂Ωj

∂Φ(x, y)

∂ν(x)
ηj(y)ds(y).



The diagonal operators Rii correspond precisely to the
scattering problems for each isolated sub-surface and
are therefore invertible (away from internal resonances).
Then, with η = [η1 η2 ... ηN ]T , A = [Aij ] and g =

[g1 g2 ... gN ]T , equation (4) can be written as

(I − A)η = g on ∂Ω (5)

where Aij = (I − Rii)
−1Rij if i 6= j, Aii = 0, and

gi = (I −Rii)
−1fi. The series solution to (5) is given by

η =

∞
∑

m=0

Amg on ∂Ω.

At this stage, we note that [A0g]i = gi, and for m ≥ 1

[Amg]i =
∑

jm−1 6=i

Aijm−1
Ajm−1jm−2

· · ·Aj1j0gj0 .

Here the summation is taken over all obstacle paths
Ωj0 ,Ωj1 , · · · ,Ωjm−1

where no two consecutive objects
are the same. Evidently then, the total surface current
η is the superposition over all finite obstacle paths of the
iterated currents arising from multiple reflections. Thus,
given an obstacle path, that is a sequence (Ωm)m≥0

where
no two consecutive objects are the same, one needs to
solve the integral equations

η0 − R0,0η0 = f0, on ∂Ω0 (6)

and inductively for m = 1, 2, · · ·

ηm − Rm,mηm = Rm,m−1ηm−1, on ∂Ωm. (7)

The significance of this interpretation stems from the
fact that it guarantees that each of the problems in (6),
(7) entails the solution of problems within single scatter-
ing configurations for which the methods described in [1],
[2] provide an error-controllable scheme with fixed com-
putational complexity.

Convergence of the Iterated Series
Suppose that the obstacles (Ωi)i=1,··· ,N are convex, and

are visible in the sense that no Ωi meets with the convex
hull of any other pair of obstacles. For a fixed m, and a
fixed xm ∈ ∂Ωm, (x0, · · · , xm−1) ∈ ∂Ω0×· · ·×∂Ωm−1

will denote the unique set of points determined by the ge-
ometrical optics solution. We also set νm := ν(xm), and
ϕm = ϕm(xm) = α·x0+

∑m−1

i=0
|xi+1 − xi|. Our first re-

sult states that, in the high-frequency regime, the behavior
of the currents, that is the solutions η0, η1, · · · , ηm, · · · of

(6), (7), depends solely on the geometrical characteristics
of the surfaces ∂Ωi on the optical ray paths.

Theorem (Asymptotic Representations of the Iterated
Currents) At each reflection m = 0, 1, · · · , the asymp-
totic representation of the iterated currents ηm = ηm(xm)
are given, on proper compact subsets of the illuminated
regions, by

ηm

(

1 + O
(

k−1
))

= 2ik (−1)m eikϕmµm

where µ0 = α · ν0, and for m = 1, 2, · · ·

µm =
xm − xm−1

|xm − xm−1|
· νm

(

m
∏

i=1

Ai

)−1/2

.

Here the Ai’s are defined recursively as

A1 = 1 +
2κ0 |x1 − x0|

x1−x0

|x1−x0|
· ν0

and for i = 1, · · · ,m − 1

Ai+1 = 1 +
2κi |xi+1 − xi|

xi+1−xi

|xi+1−xi|
· νi

+
|xi+1 − xi|
|xi − xi−1|

(

1 − 1

Ai

)

.

Moreover, at each reflection m, the iterated current ηm

vanishes to first order on proper compact subsets of the
shadowed region.

The proof of this theorem is based on the classical
methods for the evaluation of oscillatory integrals.

We now consider an orbit (∂Ωm)m≥0 with period p,
that is ∂Ωm = ∂Ωm+p for all m. Let (a1, · · · , ap) ∈
∂Ω1 × · × ∂Ωp be the unique p-tuple minimizing the
phase ϕ(x1, · · ·, xp) = |xp − x1|+

∑p−1

m=1
|xm+1 − xm|,

(x1, · · · , xp) ∈ ∂Ω1 ×· · ·×∂Ωp. Our next result (whose
proof is based on a detailed analysis of ray paths and the
use of the theory of “limit p-periodic continued fractions”
[3]) shows that the periodic ratio of iterated currents con-
verges exponentially and uniformly to a quantity deter-
mined only by the points (a1, · · · , ap).

Theorem (Rate of Convergence over Periodic Orbits)
As the number of reflections m tends to infinity,

µm+p(x)

µm(x)
= r∞ + O

( √
m

rm/p

)

uniformly for x in any proper compact subset of
⋃p

n=1 ∂ΩI
n where ∂ΩI

n are the limiting illuminated re-
gions. Here r∞ depends only and explicitly on the dis-
tances |am+1 − am|, the curvatures κm at the points am



of the surfaces ∂Ωm and the scalar products am+1−am

|am+1−am| ·
ν(am). In particular, for p = 2,

r∞ =

(

γ

[

1 +

√

1 − 1

γ

])−1/2

(8)

where d = |a2 − a1| and γ = (1 + κ1d)(1 + κ2d).

Numerical Examples
Here we provide two numerical experiments exempli-

fying our theorem on the rate of convergence over pe-
riodic orbits, and we show that this rate can provide an
accurate estimate for finite frequencies.

First we consider a two-periodic configuration consist-
ing of two ellipses illuminated from the left (see Figure
1). Figure 2 shows that the rate of convergence in (8) is,
indeed, a very good approximation even at very low fre-
quencies.
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Figure 1: A two-periodic configuration
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Figure 2: Logarithmic plot of the error |r∞ − rk| where
rk = ηm+2/ηm for the corresponding wavenumber k

Finally we consider a three-periodic configuration con-
sisting of three ellipses illuminated from the top (see Fig-
ure 3). As we mentioned, an explicit formula analogous
to (8) (though significantly complicated) can be derived
in this case. A comparison of this rate with that attained
at finite frequencies in this case is displayed in Figure 4.
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Figure 3: A three-periodic configuration
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Figure 4: Logarithmic plot of the error |r∞ − rk| where
rk = ηm+3/ηm for the corresponding wavenumber k
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