Convergent scattering algorithms
Fatia EcCeEviT

Hybrid numerical methods based upon a combination of integral equations and
asymptotic theories for the solution of high-frequency scattering problems have
found an increased interest within the last two decades. Indeed, the methodologies
developed in this time span, that specifically concern scattering off a single two-
dimensional smooth convex obstacle [2, 5, 6, 8], display the capability of predicting
scattering returns within any prescribed accuracy utilizing a number of degrees of
freedom independent of (or only mildly dependent on) the frequency.

This report concerns (i) the classification of Hormander classes and asymp-
totic expansions of multiple scattering iterations for a collection of smooth convex
obstacles that thereby allow for the extension of the single-scattering solvers in
[5, 6, 8] to multiple-scattering configurations to accompany the algorithm in [3];
and (i) the derivative estimates of multiple scattering iterations that are neces-
sary for their rigorous numerical analysis and that facilitate the development of
convergent scattering algorithms (for each fixed value of the wavenumber k) for
the computation of each iterate (utilizing a number of degrees of freedom that
depends only mildly on the frequency to attain a prescribed accuracy) based on
the ideas in [5].

To present a summary of the relevant results we have recently developed in
[1, 7], let us consider the problem of evaluating the scattering of an incident plane
wave ul¢(z) = e**? || = 1, from a compact impenetrable obstacle K with a
smooth boundary 0K. Throughout this note we concentrate on two-dimensional
configurations wherein the relevant frequency-domain problem is modeled by the
Helmholtz equation

Au(x) + kK*u(z) =0, =€ RA\K,

where the scattered field v is required to satisfy the Sommerfeld radiation condition
[4]; here, for definiteness, we shall assume Dirichlet boundary conditions on 9K.

As is well known, this problem can be restated in the form of an integral equation
in a variety of ways [4]; a convenient form for our purposes is that derived from
the Green identities resulting in the equation
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for the unknown density 7 (the normal derivative of the total field), where v(y)
denotes the vector normal to 9K and exterior to K,

]
(e.y) = 7 H' (klx —y)

is the outgoing Green function, and G = —2®. Since the solution of the integral

equation (1) is not unique when the wavenumber k is an internal resonance, in

practical implementations a “combined field” integral equation formulation must
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be used [4]. For the sake of simplicity, the derivations that follow, for the descrip-
tion of multiple scattering formulation of the scattering problem, are based upon
the integral equation (1).

Let us now further suppose that the sound-soft obstacle K is decomposed into
a finite collection of disjoint compact sub-scatterers K = K. Then the
integral equation (1) can be written as

(2) (I-R)n=f

where n(z) = (0, (), .-, No ()" and f(z) = (fo,(2), - - -, fo ()" With n, and
fo defined on 0K, and

o€l

folx) = 2ik etk o v(z),

and the operator R is defined as

9G(z,y)
RUTTx:/ ——n.(y) ds(y), r € 0K,.
(Rornr)(2) o ov(m) " (y) ds(y)
Inverting the diagonal part of (2) yields the equivalent relation
3) (I-T)n=g
with

9o = (I_ Ra’a’)_lfa, ce’l

and

T (I — Ryo) 'R,y ifoc#T
T71 0 otherwise.

The formulation (3) provides a convenient mechanism to account for multiple
scattering since the m-th term in its Neumann series solution

(4) n=>y "=y T"g
m=0 m=0

corresponds to contributions arising as a result of waves that have undergone m
reflections. More precisely, we have

(5) n" 0K, Z TorsTrp sz TrimoYro,
TO,"""m—lEZ

OFTm—1,TjF#Tj—1
where each application of a T, entails an evaluation on 0K, of a field generated
by a current on 0K, and its use as an incidence for a subsequent solution of a
single-scattering problem on 9K,. Accordingly, equations (4) and (5) guarantee
that n can be recovered as the superposition (over all infinite paths { K, }m>0 C
{K, : 0 € I}) of multiple scattering iterations 7,, that recursively solve the
integral equations

0G(z,y) ou™(z)

() S 1E) mo(y) ds(y) =2 o) " 9Ko
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and, for m > 1,

on () — /6 S sty = [ Ty ) dsty), x e 0K,

Km ov(z) aKm,laV(I)

on the path {K,,}m>o.
Supposing now that the obstacles K, are strictly convex, under certain condi-
tions, the multiple-scattering iterations 7, admit the factorizations

(6) N () = PP @ Eov(2), o € 0Ky,
wherein ,, is the m-th geometrical optics phase, and where the asymptotic prop-

erties of the slow envelope 751V are as follows (see [1, 7] for details):

Theorem 1 (Hormander classes and asymptotic expansions of 7% [1, 7]) The

m
asymptotic characteristics of the slow densities n5'°% specified by (6) are as follows:

(i) On the m-th illuminated region OKLIL, nlov(z) = nlov(z, k) belongs to the
Hormander class S1 (0K x (0,00)) and admits the asymptotic expansion

" (@, k) ~ Y K g (@)
j=0
where a, ;(z) are complez-valued C™ functions. Accordingly, for any N € NU{0},
the difference

N
Tm,N(xv k) = n;lmow(xv k) - Zkl_jam-,j(x)
j=0

belongs to Siév(aK,I,lL x (0,00)) and thus satisfies the estimates
| DDy v (2, k)| < Crn,pin,s (14 )77
on any compact subset S of OKLE for any multi-index 8 and n € NU {0}.
(ii) Over the entire boundary OK,,, n°'°% (z, k) belongs to 5’21/3 1/3(0Km % (0,00))
and admits the asymptotic expansion
nziow(x, k) ~ Z TR bm,p,q(x)\y(p) (k1/3Zm(x))
P20
where by, p o(x) are complez-valued C* functions, Zp,(x) is a real-valued C™ func-
tion that is positive on the illuminated region KL, negative on the shadow region
OKSE  and vanishes precisely to first order on the shadow boundary OKSE, and

the function U is a certain contour integral of an Airy function (see [9]). Note
specifically then, for any P,Q € NU {0}, the difference

PQ
Ry pq(a, k) = nf;lfw(wa k) — Z TR bm,p,q(x)\ll(p)(kl/gzm(x))
P,q=0
belongs to S;/g 1/3(8Km x (0,00)), p =min{2P/3,Q}, and thus satisfies the esti-
mates
| DD} R pq (@, k)| < Conypon (1 + k) ~H72/3F1B1/3

for any multi-index B and n € NU {0}.
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As we anticipated, the preceding theorem provides the necessary theoretical
background for the extension of the single-scattering solvers [6, 6, 8] to multiple
scattering configurations to accompany the algorithm in [3]. As a byproduct, we

now present the derivative estimates of the slow envelopes 71°" that can be directly

utilized for the numerical analysis of multiple scattering iterations 7,, as is done
in [5, 6] for a single convex obstacle.

Theorem 2 (Derivative estimates of 731V, [7]) Let m > 0, and denote by y(s) =

(y'(s),y?(s)) the arc-length parametrization of OK,,. Then, for all n € NU {0},
there exist a constant Cy, > 0 independent of k and s such that for all k sufficiently
large,

mns n:O717
n, slow
DI | < k4 ¢ (1 s KB+ K P u(s)) 042, =2,

where w(s) = (s —a)(b—s) and OKSE = {y(a),y(b)} is the set of m-th shadow
boundary points.
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