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Hybrid numerical methods based upon a combination of integral equations and
asymptotic theories for the solution of high-frequency scattering problems have
found an increased interest within the last two decades. Indeed, the methodologies
developed in this time span, that specifically concern scattering off a single two-
dimensional smooth convex obstacle [2, 5, 6, 8], display the capability of predicting
scattering returns within any prescribed accuracy utilizing a number of degrees of
freedom independent of (or only mildly dependent on) the frequency.

This report concerns (i) the classification of Hörmander classes and asymp-
totic expansions of multiple scattering iterations for a collection of smooth convex
obstacles that thereby allow for the extension of the single-scattering solvers in
[5, 6, 8] to multiple-scattering configurations to accompany the algorithm in [3];
and (ii) the derivative estimates of multiple scattering iterations that are neces-
sary for their rigorous numerical analysis and that facilitate the development of
convergent scattering algorithms (for each fixed value of the wavenumber k) for
the computation of each iterate (utilizing a number of degrees of freedom that
depends only mildly on the frequency to attain a prescribed accuracy) based on
the ideas in [5].

To present a summary of the relevant results we have recently developed in
[1, 7], let us consider the problem of evaluating the scattering of an incident plane
wave uinc(x) = eikα·x, |α| = 1, from a compact impenetrable obstacle K with a
smooth boundary ∂K. Throughout this note we concentrate on two-dimensional
configurations wherein the relevant frequency-domain problem is modeled by the
Helmholtz equation

∆u(x) + k2u(x) = 0, x ∈ R
2\K,

where the scattered field u is required to satisfy the Sommerfeld radiation condition
[4]; here, for definiteness, we shall assume Dirichlet boundary conditions on ∂K.

As is well known, this problem can be restated in the form of an integral equation
in a variety of ways [4]; a convenient form for our purposes is that derived from
the Green identities resulting in the equation

(1) η(x) −

∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K

for the unknown density η (the normal derivative of the total field), where ν(y)
denotes the vector normal to ∂K and exterior to K,

Φ(x, y) =
i

4
H

(1)
0 (k|x − y|)

is the outgoing Green function, and G = −2Φ. Since the solution of the integral
equation (1) is not unique when the wavenumber k is an internal resonance, in
practical implementations a “combined field” integral equation formulation must
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be used [4]. For the sake of simplicity, the derivations that follow, for the descrip-
tion of multiple scattering formulation of the scattering problem, are based upon
the integral equation (1).

Let us now further suppose that the sound-soft obstacle K is decomposed into
a finite collection of disjoint compact sub-scatterers K =

⋃

σ∈I Kσ. Then the
integral equation (1) can be written as

(2) (I − R) η = f

where η(x) = (ησ1
(x), . . . , ησ|I|

(x))t and f(x) = (fσ1
(x), . . . , fσ|I|

(x))t with ησ and
fσ defined on ∂Kσ and

fσ(x) = 2ik eikα·x α · ν(x),

and the operator R is defined as

(Rστ ητ )(x) =

∫

∂Kτ

∂G(x, y)

∂ν(x)
ητ (y) ds(y), x ∈ ∂Kσ.

Inverting the diagonal part of (2) yields the equivalent relation

(3) (I − T )η = g

with

gσ = (I − Rσσ)−1fσ, σ ∈ I

and

Tστ =

{

(I − Rσσ)−1Rστ if σ 6= τ
0 otherwise.

The formulation (3) provides a convenient mechanism to account for multiple
scattering since the m-th term in its Neumann series solution

(4) η =

∞
∑

m=0

ηm =

∞
∑

m=0

T mg

corresponds to contributions arising as a result of waves that have undergone m
reflections. More precisely, we have

(5) ηm
∣

∣

∂Kσ
=

∑

τ0,···τm−1∈I
σ 6=τm−1,τj 6=τj−1

Tστm−1
Tτm−1τm−2

· · ·Tτ1τ0
gτ0

,

where each application of a Tστ entails an evaluation on ∂Kσ of a field generated
by a current on ∂Kτ , and its use as an incidence for a subsequent solution of a
single-scattering problem on ∂Kσ. Accordingly, equations (4) and (5) guarantee
that η can be recovered as the superposition (over all infinite paths {Km}m≥0 ⊂
{Kσ : σ ∈ I}) of multiple scattering iterations ηm that recursively solve the
integral equations

η0(x) −

∫

∂K0

∂G(x, y)

∂ν(x)
η0(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K0
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and, for m ≥ 1,

ηm(x) −

∫

∂Km

∂G(x, y)

∂ν(x)
ηm(y) ds(y) =

∫

∂Km−1

∂G(x, y)

∂ν(x)
ηm−1(y) ds(y), x ∈ ∂Km

on the path {Km}m≥0.
Supposing now that the obstacles Kσ are strictly convex, under certain condi-

tions, the multiple-scattering iterations ηm admit the factorizations

(6) ηm(x) = eikϕm(x) ηslow
m (x), x ∈ ∂Km

wherein ϕm is the m-th geometrical optics phase, and where the asymptotic prop-
erties of the slow envelope ηslow

m are as follows (see [1, 7] for details):

Theorem 1 (Hörmander classes and asymptotic expansions of ηslow
m , [1, 7]) The

asymptotic characteristics of the slow densities ηslow
m specified by (6) are as follows:

(i) On the m-th illuminated region ∂KIL
m , ηslow

m (x) = ηslow
m (x, k) belongs to the

Hörmander class S1
1,0(∂KIL

m × (0,∞)) and admits the asymptotic expansion

ηslow
m (x, k) ∼

∑

j≥0

k1−jam,j(x)

where am,j(x) are complex-valued C∞ functions. Accordingly, for any N ∈ N∪{0},
the difference

rm,N (x, k) = ηslow
m (x, k) −

N
∑

j=0

k1−jam,j(x)

belongs to S−N
1,0 (∂KIL

m × (0,∞)) and thus satisfies the estimates
∣

∣Dβ
xDn

k rm,N (x, k)
∣

∣ ≤ Cm,β,n,S(1 + k)−N−n

on any compact subset S of ∂KIL
m for any multi-index β and n ∈ N ∪ {0}.

(ii) Over the entire boundary ∂Km, ηslow(x, k) belongs to S1
2/3,1/3(∂Km × (0,∞))

and admits the asymptotic expansion

ηslow
m (x, k) ∼

∑

p,q≥0

k2/3−2p/3−q bm,p,q(x)Ψ(p)(k1/3Zm(x))

where bm,p,q(x) are complex-valued C∞ functions, Zm(x) is a real-valued C∞ func-
tion that is positive on the illuminated region ∂KIL

m , negative on the shadow region
∂KSR

m , and vanishes precisely to first order on the shadow boundary ∂KSB
m , and

the function Ψ is a certain contour integral of an Airy function (see [9]). Note
specifically then, for any P, Q ∈ N ∪ {0}, the difference

Rm,P,Q(x, k) = ηslow
m (x, k) −

P,Q
∑

p,q=0

k2/3−2p/3−q bm,p,q(x)Ψ(p)(k1/3Zm(x))

belongs to S−µ
2/3,1/3(∂Km × (0,∞)), µ = min {2P/3, Q}, and thus satisfies the esti-

mates
∣

∣Dβ
xDn

kRm,P,Q(x, k)
∣

∣ ≤ Cm,β,n(1 + k)−µ−2n/3+|β|/3

for any multi-index β and n ∈ N ∪ {0}.
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As we anticipated, the preceding theorem provides the necessary theoretical
background for the extension of the single-scattering solvers [6, 6, 8] to multiple
scattering configurations to accompany the algorithm in [3]. As a byproduct, we
now present the derivative estimates of the slow envelopes ηslow

m that can be directly
utilized for the numerical analysis of multiple scattering iterations ηm as is done
in [5, 6] for a single convex obstacle.

Theorem 2 (Derivative estimates of ηslow
m , [7]) Let m ≥ 0, and denote by y(s) =

(y1(s), y2(s)) the arc-length parametrization of ∂Km. Then, for all n ∈ N ∪ {0},
there exist a constant Cn > 0 independent of k and s such that for all k sufficiently
large,

∣

∣Dn
s ηslow

m (y(s))
∣

∣ ≤ k

{

Cn, n = 0, 1,

Cn

[

1 +
∑n

j=2 k(j−1)/3(1 + k1/3|w(s)|)−(j+2)
]

, n ≥ 2,

where w(s) = (s − a)(b − s) and ∂KSB
m = {y(a), y(b)} is the set of m-th shadow

boundary points.
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