Analysis of boundary element methods for high-frequency scattering
simulations
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In the context of acoustic or electromagnetic waves, the classical issues that arise
in connection with numerical simulations for other applications are additionally
augmented with the intrinsic complexities (i.e. oscillations) of the quantities them-
selves. Still, very efficient methodologies (based on, for instance, finite elements,
finite differences or boundary integral equations) have been devised to simulate the
propagation of acoustic and electromagnetic waves in rather complicated settings.
The very nature of these classical approaches, however, limits their applicability
at high frequencies since the numerical resolution of field oscillations translates in
a commensurately higher number of degrees of freedom and this, in turn, can eas-
ily lead to impractical computational times. For higher frequencies, accordingly,
the only practical recourse is to resort to asymptotic methods (e.g. ray tracing)
as these by-pass the need for frequency-dependent discretizations. These meth-
ods, on the other hand, are not error-controllable since they solve an approximate
model instead of the original equations (e.g. the eikonal equation instead of the
Helmholtz equation or the Maxwell system).

In this report, we survey a class of recently developed numerical schemes that
combine the advantages of rigorous solvers (error controllability) with those of
asymptotic methods (frequency-independent discretizations), and that therefore
result in efficient and accurate simulators applicable throughout the frequency
spectrum.

These algorithms pioneered by Bruno et. al. [4] in the context of single-
scattering configurations (later extended by Brumno et. al. [5] to allow for the
treatment of multiple scattering effects) are based on the solution of suitably cho-
sen integral-equation formulations of the scattering problem, and they rely on three
main elements, namely: 1) the use of an “ansatz” for the unknown surface cur-
rents which reduces the integral equation to one for a slowly varying modulation;
2) specialized quadrature rules for the new integral equation that take advantage
of the highly-oscillatory nature of the kernel, and 3) full resolution of shadowing
transitions with discretizations that are adapted to their boundary-layer struc-
ture. The results in [4] clearly demonstrate the attainability of solutions within
a prescribed error-tolerance in times that do not depend on the wavenumber k.
An actual proof that provides a rigorous upper bound for the operation count of
O(K'/?) in the case of circular/spherical boundaries was recently established by
Dominguez et. al. [7] for a p-version boundary element implementation of a similar
approach where, using the exponential decay (with increasing wavenumber k) of
the surface current in the deep shadow region, they approximate this quantity by
zero there as in [4]. Our contribution in this direction has been the design of two
new Galerkin schemes [6] where we have shown that the error in best approxima-
tion of the surface current grows at most at O(k¢) (for any € > 0) for the first
algorithm, and at O(log k) for the second one (based on a novel change of variables
around the transition regions) over the entire boundary.
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Returning to the treatment of multiple scattering effects, as we have found
out, a fundamental step in understanding the high-frequency features of multiple
scattering iterations is the derivation of accurate asymptotic expansions for the
densities that are sequentially induced on the surface of the scatterers. Indeed,
when a multiple scattering orbit is considered, the field diffracted from the surface
of the m—th obstacle acts as an incidence impinging on the (m + 1)-st surface
and, thus, it generates a current therein. As we have shown in [1, 10], this allows
one to recover the symbolic classes (in the sense of Hormander) of the multiple
scattering iterates; and this, in turn, enables one to derive their high-frequency
asymptotic expansions that turn out to be uniform perturbations of order O(k~1)
of a discrete dynamical system determined by the open billiard flow in the region
exterior to the obstacles.

In two-dimensions [10, 11, 9], these expansions show that if an optical ray ar-
rives at a point on the boundary of a scatterer after m transverse bounces, then
(asymptotically) the current at that point equals the current at the (m — 1)-st
reflection-point times a continued fraction determined by geometric properties of
the corresponding ray path; consequently, the current at that point is a perturba-
tion of order O(k~1) of the product of m (recursively defined) continued fractions
determined by the entire ray path. In three-dimensional settings, on the other
hand, and for the scalar acoustic case [1], these continued fractions are replaced
by expressions in the form of two-dimensional continued fractions; a distinctive
property of these expressions, when compared to their two-dimensional counter-
parts, is that they depend smoothly on the relative angle of rotation between the
principal axes of the successive reflection points of the optical rays. The fully
three-dimensional vector electromagnetic expansions in [8], in turn, show that at
each reflection the asymptotic currents are, as they ought to be, tangential to the
surfaces and, most importantly, that they undergo a rotation and a projection onto
the surface perpendicular to the reflection vector, followed by a second rotation
and a projection onto the tangent space at the point of arrival.

To analyze these asymptotic expansions for a collection of convex structures, a
fundamental observation relates to the convexity of wavefront sets corresponding
to successive wave reflections. This has resulted in a rather technical analysis
yielding a proof that the ratios of high-frequency asymptotic expansions of multiple
scattering iterates on a periodic orbit converge to an ezplicitly computable complex
number (vector) Ry, in the form of a wavenumber dependent phase term modulated
by a (real) amplitude. Moreover, we have shown that this latter convergence is
exponential in the number of reflections, uniform over the entire boundaries, and
that the analysis is optimal with regards to the length of the periodic orbits.

Even though, as our work has shown, the multiple-scattering series converges
spectrally, it is clearly desirable to design mechanisms to accelerate its conver-
gence. In this connection, an essential consequence of our analysis is that the ratio
of iterated currents differing by one period stabilizes after a frequency dependent
number of reflections which grows only logarithmically with increasing frequency.



Accordingly, once stabilized, the behavior of the series resembles an O(k~!) per-
turbation of a geometric series which, in turn, can be well approximated by rational
functions. This, as we have shown, completely clarifies the enhanced convergence
properties of the Padé approximation procedure when applied to the multiple-
scattering series [5].

Moreover, based on the stabilization properties of the series, we have further
devised two alternative acceleration algorithms that, as opposed to Padé approxi-
mants, do not require the solution of a linear system. The first algorithm makes
explicit use of the derived rate of convergence formulas and provides an O(k™1)
improvement once the series stabilizes. The second, in contrast, is based on the
fact that the series itself is a perturbation of a geometric series and it provides a
further significant reduction in the number of single-scattering problems necessary
to solve the overall problem within a desired accuracy. Finally, for cases wherein
the aforementioned convergence is slow, we have shown that utilization of a new
post-processing algorithm based on a novel use of Krylov-subspaces provides a
further significant reduction in the number of iterations while still retaining the
frequency-independent computational cost [2, 3].
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