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Abstract bitrarily high frequency [1]. To encompass multiple-
A recently developed integral equation method can de- scattering effects, recent extensions of the approach are
liver scattering returns with prescribed error tolerarices ~ based on the iterated evaluation of a suitable Neumann
fixed computational times for single-scattering problems series that reduces the overall problem to a sequence of
of arbitrarily high frequency. To encompass multiple- single-scattering events. This series converges spigctral
scattering effects while preserving a frequency indepen- with a rate that can be asymptotically determined; see [2—
dent operation count, recent extensions of the approach 4]. As such it is amenable to acceleration via Padé ap-
are based on a spectrally convergent Neumann series toproximation, and use of this latter technique can be shown
decompose the overall scattering return into a superposi- to provide a substantial reduction in the number of itera-
tion of single-scattering contributions. For cases wirerei tions to reach a prescribed tolerance. Here, we present a
the series is slowly convergent, these implementations new Krylov-subspace method that provides a further sig-
have relied on analytic continuation mechanisms (Padé nificant reduction in the number of iterations while still
approximation) to reduce the number of iterations nec- retaining the frequency-independent operation count.
essary to reach a prescribed error tolerance. Here, we
present a new Krylov-subspace method that provides a High-frequency Multiple Scattering Formulation
further significant reduction in the number of iterations ~ For simplicity of presentation, we consider here the
while still retaining the frequency-independent computa- (exterior) sound soft acoustic scattering problem from a
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Oscillatory problems, such as those that arise in con- ”(.5”) =u 1(9;) = —€ ) a: € 0K,
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tions, have provided significant impetus to the design of
advanced numerical algorithms for decades and particu- and recall that its solution can be recast, through the use
larly over the last twenty years. As a result, an array O0f Green’s identities, in the form of an integral equation
of sophisticated simulation schemes (based on e.g. finite ‘
o : : 0G(z,y) ou"(x)

elements, finite differences, multi-resolution analyses o nx)— | ——=ny)ds(y) =2———"~= (1)
boundary integral equations) have been devised to effi- ok Ov(z) Ov(x)
ciently tackle these applications. Today, such algorithms for the (unknown)physical quantity  (normal velocity
enable the virtual analysis of large practical configura- of the total field in acoustics) confined to the scattering
tions that may span up to a few hundred wavelengths. The surfaced K whereG = —2® and® is the outgoing fun-
very nature of these approaches, however, limits their ap- damental solution to the Helmholtz equation. When the
plicability at higher frequencies since the numerical feso  scatterer is composed of several (disjoint) substructures
lution of field oscillations translates to a commensurately K = U{K, : o € Z}, equation (1) can be written as
higher number of degrees of freedom and this, in turn, can
easily lead to impractical computational times. (I—Rn=f (2)
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the rigorous solution of integral equation formulations ¢ Iz .
which incorporate asymptotic phase information), on the [77"1’ o ’77"\1\] » e = Nlox, and the operatort is de-
other hand, has demonstrated the capability of deliver- fined forz € 9K, as
ing solutions in prescribed error tolerances within fixed 0G(z,y)

computational times for single-scattering problems of ar- (Rore) (@) = /81(7 ov(x) e (y) ds(y)



Inverting the diagonal part of the equation in (2) yields

(I-Thm=g (3)
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andJ is the Kronecker symbol. Considering the series
solution to (3)

we note that
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for eacho,, € 7, and each summand in (4) corresponds,
in the limit of infinite frequency, to a group of rays that
reflect througho Ky, ...,0K,,, , and arrive abK,,, .
Thus the phase,, (z), for z € 0K,,,, of the correspond-
ing summand can be evaluated a priori as
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where the points

(2™0(z),..., 2™ () € 0K,y X --- x OK,,, _,
satisfy the law of reflection throughout to finally arrive at
™M (x) =z € 0K,,,. Knowledge of the phases,,, in
turn, allows for their extraction in the recursive applica-
tion of the operatorqd,,. and thus for the fast, frequency
independent, evaluation of the latter. In more detalil, for a
given sequencéo,, >0 C Z With o, # 011, letting
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we haven,, = n5l°Ve*¥m and thus
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is twice the normal velocity of the field scattered off
0K, , evaluated or0K,. In the form (5) the advan-
tages of the formulation become rather clear, as it en-
tails only discretizations of slow modulations and integra
tions that can be localized to the neighborhood of critical
points; see [2, 5].

Enhanced Convergence by Analytic Continuation

As has recently been shown (see [2—4]), within the con-
text of several interacting convex structures, the (spéctr
convergence of the Neumann series is governed by the un-
derlying geometrical configuration. More precisely, con-
sidering for simplicity the case of two cylindrical convex
structuresk; and K», the (high-frequency) rate of con-
vergence of the Neumann series is given, asymptotically
ask — oo, by

Ry = e (Vravr—1)7 (6)

whered = diSt(Kl, KQ), r= (1 + dlil)(l + dlig) and/-;j

are the curvatures at the distance minimizing points. The
spectral rate in (6) suggests that, as long-as 1, the
series can be interpreted as a power series in an artificial
parameter: evaluated at = 1. At high-frequencies, the
radius of convergence of this series will thus be limited (it
will approachR,;l) but its convergence can be enhanced
via classical Padé approximation; see [5].

A New Krylov-subspace Based Acceleration Strategy

Although, as shown in [5] (see also Figure 1), the use
of Padé approximation significantly accelerates the con-
vergence of multiple scattering iterations, it is not o@im
from this perspective. In the present context, a most rele-
vant property of the Padé approximants relates to the pos-
sibility of evaluating these from the sole knowledge of the
iteratesI™ g, whose calculation can be done in frequency
independent times. Indeed, the new high-frequency inte-
gral equation approach allows for the efficient evaluation
of the Krylov subspace associated with the operator,
equivalently, that off — 7. And this, in turn, suggests
that a best approximation to the solution of equation (3)
can alternatively be garnered through the application of
optimized Krylov subspace methods (e.g. GMRES).

In more detail, and lettingd = I — T, a basis
Po,P1,-- -, Pm—1 for the Krylov subspace

Km(A,g) = span{g, Ag,..., A" 'g}

can be effectively computed through the classical recur-
sion

J
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provided efficient evaluations ofi” ¢ can be attained.
Clearly, a most natural approach would rely on tie
nomial theorem
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as this reduces the problem to the fast evaluation of the
iteratesT” g entering the Neumann series. We note, how-
ever, that the convergence of this Krylov-subspace tech-
nique is strongly affected by thiérect use of (8) as it im-
pairs the approximation of each projectidi® (see Fig-

ure 1). On the other hand, owing to (8), we have
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and thus, the representation
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delivers thestable recursion (see [6])
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replacing the combined use of (7) and (8).

Numerical Example

In Figure 1, we present a comparison of (a) the Neu-
mann series; (b) the Padé approximation; (c) a Krylov
subspace method (GMRES) based on the binomial for-
mula (8); and (d) the alternative implementation of the
latter based on the decomposition (9) leading to equation
(10). Here we have considered the configuration in Figure
1 (top) consisting of two elliptical cylinders with centers
at (0,0) and (0, —4.5), and major/minor axe$0/1 and
7/2. The illumination is provided by a plane wave with
direction along the major axes and wavenumbes 40.
The bottom figure displays the number of reflections ver-
sus the relativd.> error between the exact solution and
the approximations obtained by the four aforementioned
schemes.
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Figure 1: Top: A configuration with two ellipses.

Bottom: Number of reflections vs. logarithmic plot of

L error.
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