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Abstract
A recently developed integral equation method can de-

liver scattering returns with prescribed error tolerancesin
fixed computational times for single-scattering problems
of arbitrarily high frequency. To encompass multiple-
scattering effects while preserving a frequency indepen-
dent operation count, recent extensions of the approach
are based on a spectrally convergent Neumann series to
decompose the overall scattering return into a superposi-
tion of single-scattering contributions. For cases wherein
the series is slowly convergent, these implementations
have relied on analytic continuation mechanisms (Padé
approximation) to reduce the number of iterations nec-
essary to reach a prescribed error tolerance. Here, we
present a new Krylov-subspace method that provides a
further significant reduction in the number of iterations
while still retaining the frequency-independent computa-
tional cost.

Introduction
Oscillatory problems, such as those that arise in con-

nection with acoustic, elastic or electromagnetic simula-
tions, have provided significant impetus to the design of
advanced numerical algorithms for decades and particu-
larly over the last twenty years. As a result, an array
of sophisticated simulation schemes (based on e.g. finite
elements, finite differences, multi-resolution analyses or
boundary integral equations) have been devised to effi-
ciently tackle these applications. Today, such algorithms
enable the virtual analysis of large practical configura-
tions that may span up to a few hundred wavelengths. The
very nature of these approaches, however, limits their ap-
plicability at higher frequencies since the numerical reso-
lution of field oscillations translates to a commensurately
higher number of degrees of freedom and this, in turn, can
easily lead to impractical computational times.

A recently developed scattering simulator (based on
the rigorous solution of integral equation formulations
which incorporate asymptotic phase information), on the
other hand, has demonstrated the capability of deliver-
ing solutions in prescribed error tolerances within fixed
computational times for single-scattering problems of ar-

bitrarily high frequency [1]. To encompass multiple-
scattering effects, recent extensions of the approach are
based on the iterated evaluation of a suitable Neumann
series that reduces the overall problem to a sequence of
single-scattering events. This series converges spectrally,
with a rate that can be asymptotically determined; see [2–
4]. As such it is amenable to acceleration via Padé ap-
proximation, and use of this latter technique can be shown
to provide a substantial reduction in the number of itera-
tions to reach a prescribed tolerance. Here, we present a
new Krylov-subspace method that provides a further sig-
nificant reduction in the number of iterations while still
retaining the frequency-independent operation count.

High-frequency Multiple Scattering Formulation
For simplicity of presentation, we consider here the

(exterior) sound soft acoustic scattering problem from a
bounded obstacleK ⊂ Rn (n = 2, 3)
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

∆u(x) + k2u(x) = 0, x ∈ Rn\K,
u(x) = −uinc(x) = −eikα·x, x ∈ ∂K,

lim
|x|→∞

|x|(n−1)/2
[(

x
|x| ,∇u(x)

)

− iku(x)
]

= 0

and recall that its solution can be recast, through the use
of Green’s identities, in the form of an integral equation

η(x) −
∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
(1)

for the (unknown)physical quantity η (normal velocity
of the total field in acoustics) confined to the scattering
surface∂K whereG = −2Φ andΦ is the outgoing fun-
damental solution to the Helmholtz equation. When the
scatterer is composed of several (disjoint) substructures
K = ∪{Kσ : σ ∈ I}, equation (1) can be written as

(I − R)η = f (2)

wheref = [fσ1
, . . . , fσ|I|

]t, fσ = 2∂uinc/∂ν|∂Kσ
, η =

[ησ1
, . . . , ησ|I|

]t, ησ = η|∂Kσ
and the operatorR is de-

fined forx ∈ ∂Kσ as

(Rστητ )(x) =

∫

∂Kτ

∂G(x, y)

∂ν(x)
ητ (y) ds(y) .



Inverting the diagonal part of the equation in (2) yields

(I − T )η = g (3)

wheregσ = (I −Rσσ)−1fσ, Tστ = (I −Rσσ)−1Rστ δστ

and δ is the Kronecker symbol. Considering the series
solution to (3)

η =

∞
∑

m=0

ηm =

∞
∑

m=0

Tmg ,

we note that

ηm
∣

∣

Kσm
=

∑

σ0,...,σm−1∈I
σj 6=σj−1

Tσmσm−1
Tσm−1σm−2

· · ·Tσ1σ0
gσ0

, (4)

for eachσm ∈ I, and each summand in (4) corresponds,
in the limit of infinite frequency, to a group of rays that
reflect through∂Kσ0

, . . . , ∂Kσm−1
and arrive at∂Kσm

.
Thus the phaseϕm(x), for x ∈ ∂Kσm

, of the correspond-
ing summand can be evaluated a priori as

ϕm(x) = α · xm,0(x) +

m−1
∑

j=0

|xm,j+1(x) − xm,j(x)|

where the points

(xm,0(x), . . . , xm,m−1(x)) ∈ ∂Kσ0
× · · · × ∂Kσm−1

satisfy the law of reflection throughout to finally arrive at
xm,m(x) := x ∈ ∂Kσm

. Knowledge of the phasesϕm, in
turn, allows for their extraction in the recursive applica-
tion of the operatorsTστ and thus for the fast, frequency
independent, evaluation of the latter. In more detail, for a
given sequence{σm}m≥0 ⊂ I with σm 6= σm+1, letting

η0 = gσ0
and ηm = Tσmσm−1

ηm−1 , (m ≥ 1)

we haveηm = ηslow
m eikϕm , and thus

ηslow
m − e−ikϕmRσmσm

(eikϕmηslow
m ) = F slow (5)

where

F sloweikϕm = Rσmσm−1
(eikϕm−1ηslow

m−1)

is twice the normal velocity of the field scattered off
∂Kτm−1

evaluated on∂Kσ. In the form (5) the advan-
tages of the formulation become rather clear, as it en-
tails only discretizations of slow modulations and integra-
tions that can be localized to the neighborhood of critical
points; see [2, 5].

Enhanced Convergence by Analytic Continuation
As has recently been shown (see [2–4]), within the con-

text of several interacting convex structures, the (spectral)
convergence of the Neumann series is governed by the un-
derlying geometrical configuration. More precisely, con-
sidering for simplicity the case of two cylindrical convex
structuresK1 andK2, the (high-frequency) rate of con-
vergence of the Neumann series is given, asymptotically
ask → ∞, by

Rk = e2ikd
(√

r +
√

r − 1
)−1

(6)

whered = dist(K1,K2), r = (1+dκ1)(1+dκ2) andκj

are the curvatures at the distance minimizing points. The
spectral rate in (6) suggests that, as long asr > 1, the
series can be interpreted as a power series in an artificial
parameterz evaluated atz = 1. At high-frequencies, the
radius of convergence of this series will thus be limited (it
will approachR−1

k ) but its convergence can be enhanced
via classical Padé approximation; see [5].

A New Krylov-subspace Based Acceleration Strategy
Although, as shown in [5] (see also Figure 1), the use

of Padé approximation significantly accelerates the con-
vergence of multiple scattering iterations, it is not optimal
from this perspective. In the present context, a most rele-
vant property of the Padé approximants relates to the pos-
sibility of evaluating these from the sole knowledge of the
iteratesTmg, whose calculation can be done in frequency
independent times. Indeed, the new high-frequency inte-
gral equation approach allows for the efficient evaluation
of the Krylov subspace associated with the operatorT or,
equivalently, that ofI − T . And this, in turn, suggests
that a best approximation to the solution of equation (3)
can alternatively be garnered through the application of
optimized Krylov subspace methods (e.g. GMRES).

In more detail, and lettingA = I − T , a basis
p0, p1, . . . , pm−1 for the Krylov subspace

Km(A, g) = span{g,Ag, . . . , Am−1g}

can be effectively computed through the classical recur-
sion

pj+1 = Apj +

j
∑

i=0

βij pi (7)

provided efficient evaluations ofAmg can be attained.
Clearly, a most natural approach would rely on thebi-
nomial theorem

Am =

m
∑

j=0

(

m

j

)

(−1)j T j (8)



as this reduces the problem to the fast evaluation of the
iteratesT jg entering the Neumann series. We note, how-
ever, that the convergence of this Krylov-subspace tech-
nique is strongly affected by thedirect use of (8) as it im-
pairs the approximation of each projectionAm (see Fig-
ure 1). On the other hand, owing to (8), we have

Km(A, g) = span{g, Tg, . . . , Tm−1g} ,

and thus, the representation

pj =

j
∑

i=0

γijT
ig (9)

delivers thestable recursion (see [6])

pj+1 = (I − T )pj +

j
∑

i=0

βijpi (10)

=

j
∑

i=0

γijT
ig +

j
∑

i=0

γijT
i+1g +

j
∑

i=0

βijpi

replacing the combined use of (7) and (8).

Numerical Example
In Figure 1, we present a comparison of (a) the Neu-

mann series; (b) the Padé approximation; (c) a Krylov
subspace method (GMRES) based on the binomial for-
mula (8); and (d) the alternative implementation of the
latter based on the decomposition (9) leading to equation
(10). Here we have considered the configuration in Figure
1 (top) consisting of two elliptical cylinders with centers
at (0, 0) and (0,−4.5), and major/minor axes10/1 and
7/2. The illumination is provided by a plane wave with
direction along the major axes and wavenumberk = 40.
The bottom figure displays the number of reflections ver-
sus the relativeL∞ error between the exact solution and
the approximations obtained by the four aforementioned
schemes.
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Figure 1: Top: A configuration with two ellipses.
Bottom: Number of reflections vs. logarithmic plot of

L∞ error.
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